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Abstract

In this paper, an exact solution of multiple collinear cracks in piezoelectric material is obtained. The permittivity of
air (environment) is considered. Two cases have been studied. In the first case, the permittivity of air is far less than that
of piezoelectric material. Therefore, the electric induction in the air is negligible. In the second case, the permittivity of
air is comparable with that of piezoelectric material. The problem is deduced into Riemann—Hilbert problem and
solved. By the way, the electric boundary conditions are discussed. This result demonstrates that the consideration of
air in crack gap reduces the stress intensity factor. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

From electric engineering to information technology and from ferroelectrics to piezoelectric materials,
the electric fracture mechanics is very important. It has been 23 years since Cherepanov (1977) introduced
J-integral in the electromagnetic field.

Although many experts Gao et al. (1997); Hao et al. (1996); Sosa (1992); Suo (1991); Suo et al. (1992);
Zhang and Tong (1996); Zhang et al. (1997); Zhong et al. (1997); have studied electric fracture mechanics,
there are still arguments about electric boundary conditions at crack surfaces. Some authors as Parton
(1976), Mikhailov and Parton (1990) considered the following (it is supposed that the crack is located on
the Ox-axis):

Dy=D;, ¢ =¢, (1)

where D, is the normal component of electric displacement component and ¢ is the electric potential. The
boundary condition (1) has been argued by Pak (1990).

Others have supposed that air (for convenience, the air is used to replace environment because they do
not have any mathematical difference) enters when a crack becomes a gap. The permittivity of air is far less
than those of piezoelectric materials, so the electric boundary condition can be written as Deeg (1980)
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Fig. 1. Multiple cracks.

D} =D; =0. (2)
Some times, the crack gap is full of conduction fluid as McMeeking (1987). One has
E; =0 or ¢ = const. (3)

Neither Eq. (1) nor Eq. (2) can avoid their incompletion. If the permittivity of air is not quite smaller
than that of the solid, the electric induction in the air (environment) cannot be neglected.

Strictly, the electric boundary condition on crack surfaces can be written in the form (if there is no
charge in the crack gap and the large deformation is not considered):

[D2] =0, [p] =0, A’ =0, (4)

where [D,] is the jump of electric displacement component between crack surface and air in deformed crack
gap, [¢] is the jump of potential ¢ at same place, ¢ is the ¢ in deformed crack gap and A¢' =0 is
((2/2x2) + (22/2xd)) ' = 0.

Thus, one has to solve Laplace equation in the deformed crack gap. It is too difficult to deal with.

Considering the gap is very small after deformation, Hao et al. (1994) have used the linear change of ¢
along the normal of crack surface to replace the rigorous solution of Laplace equation. In the gap, E, (for
small deformation case, E, is replaced by E,) becomes —(¢™ — ¢~)/(u3 — u5), and u, is the displacement
component.

Considering D, = ¢,E, in air, they obtain

Dy =—eu(o" — @) /(4 —uy), (%)

where ¢, is the permittivity of air. Since in the gap, £, becomes a constant along the normal, D, is also a
constant along the normal. Then, they obtain

Dy =Dy = —za(p" — ¢ )/(uy; —u). (6)

It is apparent that Eq. (5) will be reduced to second one of Eq. (1) when u; —u; =0, and to Eq. (2)
under the condition ¢, = 0.

Although this boundary condition has considered the air in the crack gap, there is no solution related to
this boundary condition except one crack problem. In this paper, the problem of multiple collinear cracks is
considered (Fig. 1). Two cases have been dealt with. The first is of boundary condition (2) and the second is
of condition (6).

2. Basic equations

In accordance with Lekhnitskii (1981) and Savin (1961), the constitutive equation is rewritten in the
form:
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& = a;0; + gDy, E; = —gi0; + ouDx, (7)

where the means of ¢; can be understood by referring to Hao et al. (1994).

When the components of stresses and electric displacement are independent of x3, there are four complex
functions fj(z;) (z; = x; + wx;). The four constants u, are complex with positive imaginary part. The
stresses and electric displacements can be represented by the linear combination of these functions:

4 4
0;=2ReY kyf/(z;), Du=2Re> dufl(z;)  hy=up ky=1, ks =ayu k= —a;, ke =—p;,
j=1 j=1

dlj = bl de = *bp (8)

where a;, b; and other coefficients in later formulae of this part can be referred to Hao et al. (1994).
It is not difficult to express the displacement and potential, such as

¢ Z (ki = Euad)If] (1) ™ = £ (1)), ©)

4
wj =1, =2Re Y (Bokyy + 2 daf) [} (1) = f1(x1) 71/ 1y, (10)
=1
where r =1,2,4,5,6 and oo =1, 2.

As the problem of multiply connected body is studied, the single value requirements of displacement and
potential have to be considered. They are that the value f](x )h— f;(x1)” must be zero at any point on Ox;
except crack surfaces. For these requirements, one chooses 7 points on Ox; except crack surfaces. At the n
chosen points, there must be

]‘Jf(xl)+—f/.’(x1)7 =0. (11)

It is allowed that between two neighbouring cracks, only one chosen point or the beginning point o of
integral [ f7(x1)dx; is located.

3. Boundary conditions

Only the cracks on Ox; are considered; therefore, on crack surface, it is supposed that

0y =04=06=0 (12)

D =D; =0 (13)
or

Dy =D, =—&(p" — )/ —uy). (14)
At infinity

g, =0;", D;=DF. (15)

Later, the case Dy = D; = m is considered.

It is solved with the substituting method. Firstly, let D, = m and ¢; = 0 in all plane. Therefore, a constant
solution is obtained. In this solution, the cracks are not open. Secondly, The electric displacement is
D5° — m at infinity and zero at crack surfaces. Add this solution and constant solution, one will have the
solution of the original problem.
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4. Solution to the problem

Using the boundary conditions at infinite oo and points on Ox, this problem is deduced to Riemann—
Hilbert problem.

Firstly, the boundary condition (2) (D5 = D; = 0 on crack surfaces) is considered and then, the bound-
ary condition (6) are dealt with.

The boundary condition (2) and the mechanical boundary conditions are

D), =0, =04 =05 =0 on crack surfaces. (16)

For the linear combination of the four complex variable functions, Eq. (16) becomes

4 4
2ReZkl~jf/.”(x1) =0, ZReZdzjﬂ’(xl) =0 on crack surfaces (17)
=1

=1

where j = 1-4,i=2,4,6.
Using the new notations /;;, these conditions D, = ¢, = 64 = ¢ = 0 also can be rewritten into the form:

4 4
Z Lyf] (x1) Z ,jf x1) =0 on crack upper and lower surfaces (18)

j=1

where j=1-4,i=1,2,3, l;j =kyj, i =4, l;j = dy;.

From relation (18) D, = 0, = g4 = 6¢ = 0 and the continuous condition in the other part of Ox; (here,
the body is continuous and the functions are also continuous), the function Z}Ll Lif](z) — Z_?:l I fj” (z) is
analytical in whole plane. Because one can consider infinite (0co) as a point and the value of the combination
Z;Ll Lyfi(z) — Z;Ll Ly fj”(z) is not infinitely large, it must be a constant in all plane. Considering it on Ox;,
one supposes this constant being imaginary 2iv;.

4 4
Z lz:/f,-”(Z) - Z l_i,ifj//(z) = 2iv;. (19)
J=1 Jj=1

Substituting Eq. (19) into Eq. (18), one has

4 4
Z l,,fj.”(xl)Jr + Z lyf] (x1)” = 2iv; on crack surfaces. (20)
=1 =1

At infinite point,
4
Z lijf_/”(z) =e; +1iv;, (21)
=1

where e; is determined by the remote boundary condition (15) and v; by Eq. (19).
By Muskhelishvili (1963), one obtains

Z lyff (2) = ei +ifi + &[0(z) — 1], (22)

n

12
Q@) ="+ '+ Fez+ c,,]/ [ (z—a)(z— bk)] , (23)

=1
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where ¢y, ¢y, . ..,c,1, ¢, are defined by single value requirements of displacements and potential and a; and
by are the two tips of the kth crack. They will be discussed.
The function $_% i1 Liif} (z;) will be found by the known E 7'(z). The unknown imaginary constants

iv; are no use for us and will not be discussed.
Then, using linear algebra method, one can find functions f7'(z;) as:

f(@) =Y xiles +if; + ¢0@) — 11}, (24)

J=1

where x;; is determined by linear algebra method.

In order to satisfy the requirement of single value the functions f] (x))" — f;(x;)” must be dealt with. For
these reasons, one has to find the function [;' O(u)du = P(x;) where point o is located on Ox; (not on the
crack surfaces). As mentioned above, any pomt to check the requirement of single value cannot be located
between the same two cracks with point o. One takes the integral path upon the cracks for f; (x;)" and
below the cracks for f '(x1)”. It is found that

f)" = [le/el X1) leﬁ/'ejp(xl) = leﬁ/'ej[P(xl)_ —P(x1)"]

= A[P(x1)” = P(x1)"], (25)

4
where A,‘ = Zj:l xijej.. . ) .
When constant 4, is not equal to zero, the requirement of single value is

P(X1)7 - P(X1)+ =0. (26)

The location of the point x; was discussed above.

When the single value requirement is satisfied, the functions f’(z;) are known. The case for boundary
condition (2) is solved. The detail will be discussed in numerical example.

Now, the electric boundary condition (6) are concerned with. It is only considered that at infinite, electric
displacement component is D3° — Dy where D; is unknown D, of upper surface in crack gap. There must be

Dy = —e.(¢" —97)/(u3 —uy)

= _gaReZ(hll rj ilx 0])‘4 [P()C]) _P(x1)+]/ReZ(ﬂ2rkrj+n2ad1j)Aj[P(x1) _P(x1)+}//'t.ja

J=l1 J=1

(27)

where r =1,2,4,5,6 and oo =1, 2.
On crack surfaces, one can find that the function [P(x;)" — P(x;)"] is imaginary. Then, Eq. (27) becomes

DSL = —&, Imz hlr rj 611 7, ‘|/[Imz ﬁZ; i+ n2adﬂj)Aj/ﬂj] . (28)

j=1

It is changed with ¢?°, D*(DY — D5) and material constants but not with coordinate. Eq. (28) can be
rewritten into this form:

Dy = (n+pDy)/(q +tDy), (29)

where the coefficients n, p, ¢, ¢ are determined in Eq. (30) i.e. by ¢°, D{* and material constants. Eq. (29)
becomes a quadratic equation of D3 and can be solved.
When Dy is found, let it be the constant m and one can solve this question as mentioned above.
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5. Numerical example

In this section it is assumed that the piezoelectric materials is a PZT-4 ceramic with material constants
that can be found in Berlincourt et al. (1964).

The plane strain case of a transversely isotropic material is only considered. As Sosa (1991), the isotropic
plane is the Oxy plane. The Oxz plane is taken into consideration (if the Oxy plane is dealt with, there is the
antiplane case). For convenience, one renames the coordinates such that x — x; and z — x,.

& = a;;0; + by:Dy, E; = —bjo; + 64Dy, (30)
where i, j=1-3, f, h=1-2, &5 = 2¢,,, 03 = 0, a31 = a;3 =0, a3 = az; = 0 and by = b, = by; = 0.
The material constants, as Sosa (1991), are
a; =8205x 1072, g, = —3.144 x 1072, a4y = 7495 x 1072, 433, =19.30 x 1072 (m*N ")
by = —16.62 x 1073, by =23.96 x 1073, b3 =39.40 x 107° (m>*C") (31)
011 =7.66 x 107, 65 = 9.82 x 107(V2N).

As there is no coupling with the antiplane case, only three pairs of functions of generalized complex
variables f]'(z;) are dealt with. These generalized complex variables (z; = x; + y;x,) are

W =1.228i, u, =0.203 4+ 1.067i, pu; = —0.203 + 1.067i. (32)

It is supposed that ¢5°and D3 do not equal zero at infinite (c0). The /7' (x;) are
"(x1) = [~1.967265 — 0.208 x 10'°DY]Q(x;) + constant (33)
7 (x1) = [(1.4836 — 1.8731i)05° + (0.1041 + 0.07989:)10'°D]Q(x; ) + constant (34)
Y(x) = [(1.4836 + 1.8731i)05° + (0.1041 — 0.079891’)1010D§C]Q(x1) + constant. (35)

Two cracks [—a, —b] and [b, a] are considered. One has

O(n) = [ — @E(R)[F(k)]/[(x] —a*) (7 — 7)), (36)
where k = (a® — b2)'?/a, F(k) = [7(1 — K*sin® 6)"'*d0 and E(k) = [7*(1 — k*sin 6)'/ d0.
By the way, the SIF is dealt with. For convenience, only ¢5°and D5° do not equal zero.

3
lim+/2%(x — a)o, = lim+/2%(x — a) ijﬁ(xl) = lim+/27n(x — a)o5°O(x))
X1—a j:1 X1—a

X1—a

Kla

= o5 lim V2x[x; — &E(k)/F(k)}/[(x1 + a)(x = 6)]?

xX|—a

= o¥Vaa*[l — E(k)JF(K)] /(@ — b)), Ki_, = lim \/2n(—a — x)0y = Ky, (37)

xX|——a

3
Ky = lim+/2n(b — x)o, = lim V2r(b—x) > fl(x) = lim V21(b — x)oF 0(x1)
X]1— = h X]—

x1—b

= o5 lim V2n(=i)[x} — @E(k)/F(K))/[(x1 + b)(x; — )]

x1—b

= o3\/ab P[PE(k) JF (k) — b)) (a® — bO)'*, K= lim \/2n(x +b)o> = Kip. (38)
For one crack case, b =0; k = 1; E(k)/F(k) = 0 and K,, = 65°v/an = K;_,.
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By the same way, one has

Ko = (D¥ = D) (m)"?a*P[1 — E(k) [F (k)] /(a® — b)", (39)

Kip = (D5 = D3)(m) *b P[@E(k) [F (k) = 07) /(@@ — %) 2. (40)
It is nature that for boundary condition (2) (impermeable case), it is obtained that

Kiy = D5 ()" a1 — E(k)[F(R)) /(@ = 1), (41)

Ky = D5 (m) "6 P [@E(k) [F (k) — b)) (@ = )2, (42)

From Egs. (39)-(42), the ratio of the stress intensity factor K, of permeable (considering air) case to im-
permeable case is (DY — Dy )/D5.

Now, an example for the component of electric displacement in deformed crack gap D7 is given.

It is assumed that D = 1072 Cm 2 and D} = —¢,(¢" — ¢~ )/(u5 — u; ). One obtains

0¥ =10° Nm™?, D =096Dy, o =2x10°Nm?*, D;j =0.93D%,
0¥ =10" Nm™2, D} =0.76Dy, 0¥ =2x10" Nm*, Dj =0.55DF, o =10° Nm?,
Dy = 0.46D5.

It is apparent that the higher the component of stress tensor ¢5° is, the less the component of electric
displacement at deformed crack surfaces Dj is. The consideration of air in the gap reduces the stress in-
tensity factor Kj.

6. Concluding remarks

An exact solution of collinear multiple cracks in piezoelectric material has been solved by means of
complex variable theory. Besides impermeable cases, the permittivity of air (environment) is also dealt with.
Further study must focus on the more general method to consider the permittivity of air (environment). It is
necessary to discuss the large deformation, as Hao (1990).
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